Courses Catalogue

We welcome you to explore NOVA’s academic offerings.
Our catalogue provides a description of the courses offered at NOVA as well as useful information about our Schools.

more info Courses Catalogue

Faculdade de Ciências e Tecnologia

Solid State Physics



Academic unit

Faculdade de Ciências e Tecnologia


Departamento de Física



Teacher in charge

João Paulo Lança Pinto Casquilho, Maria de Fátima Guerreiro da Silva Campos Raposo

Weekly hours


Total hours


Teaching language




One intends to focus the fundamental concepts of Condensed Matter, emphasizing the applications to engineering and life problem systematization and solving. Fundamental proprieties of Condensed Matter will be verified in experimental laboratory sessions, involving the comprehension of experimental setups, data collecting and treatment systematization and elaboration of scientific reports.

Subject matter

Solid State Physics Program

1. Electrical Properties of metals
1.1 Classical theory of conduction in metals.
1.2 Failures of the classical model.
1.3 Qualitative aspects of the electric conduction from a quantum view-point.
1.4 Band theory of solids
1.5 Fermi-Dirac distribution
1.6 The density of states.
1.7 The free electron model.
1.8 The density of occupied states.
1.9 Introduction to band theory of electrical conduction.

2. Semiconductors
2.1 Band theory of solids –again.
2.2 The difference between insulators and semiconductors.
2.3 Holes.
2.4 Optical properties of semiconductors. Photocondutivity.
2.5 The effective mass.
2.6. n-type and p-type semiconductors. Hall effect.
2.7 The free electron model applied to semiconductors.

3. Thermal properties of solids
3.1 Thermal vibrations of the atoms.Phonons.
3.2 Thermal expansion.
3.3 Contribution of thermal vibrations of crystalline lattice for the heat capacity of the solids.
3.3.1 Classical approach.
3.3.2 Einstein Model.
3.3.3 Debye Model
3.4 Thermal conductivity.

4. Magnetic properties of solids
4.1 Macroscopic magnetic quantities.
4.2 Atomic magnetic moment.
4.3 Paramagnetism. Brillouin theory.
4.4 Ferromagnetism. Ferromagnetic domains.

5. Crystals and crystalline solids
5.1 Compact structures
5.2 Non-compact structures.
5.3 Crystalline lattice.
5.4 Labelling crystal planes.
5.5 X-ray diffraction


 4. Bibliography

Condensed Matter Physics, Maria Raposo, (2007)

 R. Turton,  The Physics of Solids,  ed. Oxford University Press (2000)

 D.L. Goodstein, States of Matter, ed. Dover (1985).

Evaluation method

5. Assessment elements

5.1. Laboratorial component

5.1.  Preparation of five experimental sessions

5.2.  Performing five laboratorial experimental sessions. To this component a final mark, NL, is attributed.

5.2. Online components that could be questions problem solving, simulation or conceiving a lesson.

6.   Exams
Two final exams. The exams consist of two parts: a theoretical part and a problem solving part where consultation is allowed. To this component a final mark, NE, is attributed. 

7. Assessment rules

7.1. Admission to final exam

 7.1.1. Students without previous attendanceThe access to final exam is according with the following conditions: Laboratory mark, NL10

7.1.2. Students with previous attendanceAutomatically admitted to exam

7.2. Course approval and mark

N =0,7 NL+O,3 NE , N ≥10 and NE8 .  

8.Final mark, NF
NF = N
9. Scales and rounding

All the marks are given within the scale from 0 to 20. The marks of each component are given up to the first decimal point and the final mark is and integer.